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Adaptive Subgraph Neural Network
with Reinforced Critical Structure Mining
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Abstract—While graph representation learning methods have shown success in various graph mining tasks, what knowledge is
exploited for predictions is less discussed. This paper proposes a novel Adaptive Subgraph Neural Network named AdaSNN to find
critical structures in graph data, i.e., subgraphs that are dominant to the prediction results. To detect critical subgraphs of arbitrary size
and shape in the absence of explicit subgraph-level annotations, AdaSNN designs a Reinforced Subgraph Detection Module to search
subgraphs adaptively without heuristic assumptions or predefined rules. To encourage the subgraph to be predictive at the global
scale, we design a Bi-Level Mutual Information Enhancement Mechanism including both global-aware and label-aware mutual
information maximization to further enhance the subgraph representations in the perspective of information theory. By mining critical
subgraphs that reflect the intrinsic property of a graph, AdaSNN can provide sufficient interpretability to the learned results.
Comprehensive experimental results on seven typical graph datasets demonstrate that AdaSNN has a significant and consistent
performance improvement and provides insightful results.

Index Terms—Graph representation learning, graph neural network, graph classification, critical structure, reinforcement learning,
mutual information.

✦

1 INTRODUCTION

G RAPH is widely-used to represent and organize data
with complicated relationships [1], [2]. Analyzing the

underlying properties of data with graph structure is funda-
mental and important in the graph mining area. However, it
is hard to process graph data by machine learning methods
directly due to its non-Euclidean property, i.e., arbitrary
size and complex topological structure [3], [4], [5]. Over the
last decade, lots of efforts have been made to extend deep
learning on graphs [6] in a growing number of real-world
applications including anomaly detection [7], [8], fraud de-
tection [9], drug discovery [10], community analysis [11],
link prediction [12], etc. Graph representation learning [13]
is one of the key techniques, which aim to extract underlying
information of the graph-structured data by projecting it
into low dimensional vector representations.

Graphs have a wide spectrum of local structures, ranging
from nodes, and motifs, to subgraphs. Prevailing works
show that the vital characteristics and prominent patterns
of a graph are reflected through local structures such as
motifs and subgraphs [14], [15]. Many research efforts have
been focused on preserving graph topology information,
ranging from shallow kernel-based methods to deep graph
neural networks. Graph kernel methods [16] decompose
graph substructures by kernel functions and directly exploit
them to measure the similarity of pairs of graphs rather
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than vectorization. Graph neural networks (GNNs) [17],
[18], [19], [20] generally follow a message-passing scheme,
which aggregate neighbor information recursively between
a neighborhood subgraph of a central node. Even though
GNNs show remarkable success in many graph mining
tasks, most of them only propagate information across edges
for node representations and globally summarize them for
an overarching graph representation, which is inherently
flat. The global memorization includes averaging all node
representations [21], adding virtual nodes [5], using fully-
connected layers [17], [22] or convolutional layers [23], etc.
However, these flat GNNs share a drawback in that they
detect only fuzzy patterns and are unable to capture precise
distinguishable structural information effectively. Recently,
researchers attempt to extract the hierarchical substructures
of graphs via hierarchical graph pooling aggregation [24],
which greatly improves the ability of graph representation.

It’s found that the properties of a graph are mainly deter-
mined by some critical structures [25], [26], [27]. For exam-
ple, molecular toxicity is determined by several functional
groups. Classmate relationships are important for interest
recommendation but not for hometown classification. Inves-
tigating critical structures (i.e., structures that are dominant
to a prediction in the task) is crucial toward pushing for-
ward the performance and explanation boundary of GNNs.
Most of the current works exploit the critical structure
pattern based on heuristic intuitions or experimental trial-
and-errors, and the critical structures of very simple shapes
such as ego-networks [28] or motifs [29], [30]. However, the
following challenges make the critical structure detection
task nontrivial: (1) Data-Specific and task-specific. Critical
structures can be different across different datasets and
tasks. It’s hard to predefine their patterns. (2) Arbitrary
size and shape. Critical structures can be larger structures
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of varying sizes and shapes. It’s hard to design fixed rules
as extract constraints. (3) Absence of annotations. For most
datasets and application scenarios, the annotations of critical
structures are absent. The absence of annotations makes
it difficult to utilize the valuable information of critical
structure in the learning process in the form of supervi-
sion information. It’s hard to mine critical structures in
an unsupervised way. Even though we have some expert
knowledge, this knowledge cannot be transferred to other
tasks. (4) Local-Scale and global-scale. Critical structures
should not only contain local semantics (at local-scale) but
also play important roles in the global graph properties (at
global-scale).

Present work. This paper proposes AdaSNN1, a novel
Adaptive Subgraph Neural Network for graph classifica-
tion, to tackle all of the challenges above. AdaSNN’s core
principle is to detect critical subgraphs as a representative
abstraction of the graph, which can navigate the complexity
of customized hierarchical structures whilst maintaining
discriminative graph representations. AdaSNN reveals crit-
ical subgraph-level patterns in a sketched graph by three
steps: (1) critical subgraph detection, (2) subgraph sketching
and encoding, and (3) subgraph representation enhancement.
The hierarchical structure contraction preserves structure
properties hierarchically: node, intra-subgraph, and inter-
subgraph. We aim to provide an effective and adaptive
framework for critical subgraph detection without domain
knowledge and learn discriminative representations with
good generalization performance in an explanatory way.

A preliminary version of this work appeared in the
proceedings of the Web Conference 2021 [31]. This journal
version has extended the preliminary two phase “sampling-
selection” critical subgraph detection model SUGAR to an
adaptive critical subgraph exploration architecture. This
journal version involves several improvements in upgrad-
ing the framework of the subgraph neural network with
significant aspects. First, we designed a novel Reinforce-
ment Subgraph Detection Module to detect critical sub-
graphs. It can find critical subgraphs adaptively according
to the feedback of downstream tasks, solving the annotation
absence problem effectively. Compared with SUGAR, the
critical structures detected by AdaSNN are with varied
sizes and shapes, which are not constrained to inflexible
sampling rules and needless domain knowledge. Second,
we design a Bi-Level Mutual Information Enhancement
Mechanism including both global-aware MI and label-ware
MI, which encourages the detected subgraphs not only to be
aware of global graph properties but also to be predictive
for the downstream task. Third, we carry out extensive
experiments compared with more competitive baselines on
a large-scale bioinformatics dataset and three representative
social network datasets. We also evaluate the robustness of
AdaSNN on the graph denoising task. We highlight the
advantage of AdaSNN as follows:

• Multi-Resolution. AdaSNN starts with node-level at-
tribute embeddings and continues with subgraph-level
pattern combination, and all the way up to graph-level

1 The code of this work is publicly available at https://github.com
/RingBDStack/AdaSNN.

representation, providing a multi-resolution framework
for graph representation learning.

• Adaptive. AdaSNN is a data-driven and task-driven
framework trained under the supervision of ground-truth
graph labels. The integration of reinforcement learning
and graph learning makes AdaSNN perform supremely
across various graph data domains.

• Interpretable. AdaSNN directly reveals the vital and
label-relevant subgraphs dominating the learned result
rather than learning a representation of the input data in
the hidden space, which provides intuitive and insightful
interpretation into downstream applications.

The remainder of this paper is organized as follows.
Section 2 introduces the background and related work.
Sections 3 proposes the overall architecture of AdaSNN and
then introduces the Reinforced Subgraph Detection Module
and the Bi-Level MI maximization mechanism, respectively.
In Section 4, we describe the experimental methodology and
present the results. Finally, Section 5 concludes this work
and suggests future research directions.

2 RELATED WORK

In this section, we will discuss the following two lines
of related work including graph neural networks, critical
structure mining in graph representation learning, GNNs
with reinforcement learning, and the GNNs with mutual
information mechanism.

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) [24] extend the tradi-
tional convolution operator in regular domains to arbi-
trary and unordered graph-structure data, including spatial-
based [17], [32], [33] and spectral-based methods [34], [35],
[36], [37]. Generally, GNNs project graph data into a con-
tinuous and low-dimensional space by a message-passing
scheme recursively [17]. Most of them globally fuse node
features to generate overarching graph representations [32],
[38], [39], [40], [41], which fail to capture the hierarchical
structure properties.

Some graph pooling methods [23], [42], [43], [44], [45]
try to propose some principles to extract structure infor-
mation hierarchically, which can be broadly divided into
two categories: cluster based pooling and selection based
pooling. Cluster based pooling methods cluster nodes into
groups and then generate a coarsened graph based on the
group assignments. Typical methods include DiffPool [42],
EigenPool [46] and ASAPool [45], etc. This kind of method
utilizes feature and structure information by clustering im-
plicitly, which leads to a lack of interpretability. Selection
based pooling methods [23], [44], [47] select important nodes
by calculating their importance scores to remove redun-
dant information. SortPool [23] learns nodes’ structure roles
using the WL kernel and sorts nodes according to that.
Top-k Pool [44] learns the nodes’ importance values by a
trainable vector and selects the most important K of them.
SAGPool [43] directly trains a binary classifier to decide the
preserving nodes. Most selection pooling methods apply
the node-level strategy, ignoring the semantic information
of local substructures.
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TABLE 1: Comparison of graph representation methods in the perspective of critical structure mining.

Graph embedding model
Data-specific and

task-specific
Arbitrary size

and shape
Local Scale Global Scale

Without fixed rules
or prior knowledge

Graph Kernel ( [48], [49]) ✓

Spectrum GNNs ( [35], [50], [51]) ✓

Spatial GNNs ( [18], [19], [52]) ✓ ✓

Clustering Pooling ( [42], [45], [46]) ✓ ✓

Selection Pooling ( [23], [43], [44]) ✓ ✓

Motif-based GNNs ( [30], [53]) ✓

Graph transformers ( [54], [55], [56]) ✓ ✓

Ego-CNN [28] ✓ ✓ ✓

NCAT [26] ✓ ✓ ✓

SIB [27], [57] ✓ ✓ ✓ ✓

SUGAR [31] ✓ ✓ ✓

AdaSNN(Ours) ✓ ✓ ✓ ✓ ✓

To sum up, despite the popularity and importance of
structures for graph representation learning [53], [58], there
is still limited research on critical structure discovery.

2.2 Critical Structure Mining
Local substructures contain more complex structural char-
acteristics and some of them play key roles that determined
the model’s prediction. Many methods have been proposed
to mine the critical structure.

Graph kernel [16] is a conventional way for critical
structure extraction, which directly use kernel functions to
decompose pre-defined structures (e.g., walk [59], shortest
path [60], subgraph [48]) from the original graph structure.
Due to their specialization, graph kernels show competitive
performances in some particular domains. However, the
critical structure patterns in form of kernel function are
most handcrafted and heuristic, which suffers from poor
flexibility and generalization performance.

The neighborhood subgraphs are widely-used as crit-
ical structures. Ego-CNN [28] stacks up multiple ego-
convolution layers to detect precise critical structures, but
it can only detect the local ego-networks with K nearest
neighbors.

Motifs (i.e., frequently-occurring subgraph patterns) are
also widely used to preserve local structure properties [29],
[30], [61]. NEST [53] combine motifs to explores various
subgraph-level patterns. Motif-based methods are limited
to enumerating small local substructures as local features
by predefined motif extraction rules, which require to be
manually designed with domain expert knowledge.

Graph transformers [54], [55], [56] have shown out-
standing performance in recent works. Rather than using
the structure explicitly as GNNs, most of existing graph
transformers [54], [55] capture interaction information be-
tween node pairs by the self-attention mechanism. As a
result, they only encode positional relationships between
nodes and fail to identify structural similarities between
nodes, and can only identify the critical edges. SAT [56]
uses the k-hop subgraphs or k-subtrees to extract structure
information. However, the critical structure found by SAT is
still constrained by the fixed construction rules.

Find more flexible subgraphs is also attract some re-
search attention [25], [26], [27]. SGN [25] predefines de-
tection rules to select appropriate subgraphs, expanding

the structural feature space effectively. Compared to the
proposed AdaSNN, SGN detects and selects subgraphs by
heuristic rules, and the provided information is insufficient
when subgraphs are large. NCAT [26] matches fixed-size
combinatorial neighbors with learnable patterns and assigns
different weights to each combination. SIB [27], [57] learns
an assignment matrix for each edge directly to recognize
the information bottleneck subgraph, which ignores the
semantics of local subgraphs. CAL [62] discovers the critical
subgraphs by estimating the causal and shortcut features via
an attention module.

To sum up, the detection of data-specific and task-
specific critical structures at both local scale and global
scale without fixed rules or prior knowledge remains an
important but unsolved problem. Table 1 compares our
AdaSNN with existing graph representation learning meth-
ods in the perspective of critical structure mining. To the
best of our knowledge, AdaSNN is the first method that
can detect critical subgraphs of arbitrary size and shape in
both local-scale and global-scale adaptively without prior
knowledge of the dataset.

2.3 GNNs with Reinforcement Learning
Reinforcement learning (RL) [63] is one of the basic machine
learning paradigms, which learns from the reward of the
environment rather than labeled data. Recently, RL is incor-
porated into many graph mining tasks [64] including graph
representation learning [65], graph adversarial attack [66],
relational reasoning [67], GNN explainer [68] and combina-
tion optimization [69]. Similar to our AdaSNN, some meth-
ods employ RL to find critical structure to boost the ability
of graph learning. Most of them (e.g., CARE-GNN [70],
Rio-GNN [71], GDPNet [72] and FinEvent [73]) use RL
to select critical neighbors to improve the effectiveness of
GNNs. Policy-GNN [65] uses the DQN [74] to select the
optimal iterations of aggregations for different nodes. RL-
HGNN [75] adaptively designs meta-paths for the heteroge-
neous graph by a policy network. GraphNAS [76] designs
an RL algorithm to search the optimal architectures of graph
neural networks.

To sum up, current GNNs with RL focus on finding
critical relations or better GNN architectures for node-level
tasks. There is still limited research on advancing RL to find
more complicated critical structures for graph-level tasks.
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2.4 GNNs with Mutual Information
Mutual Information (MI) [77] provides a unified way
to measure the degree of correlation between two vari-
ables, which is widely used in many applications. Re-
cent works [78], [79], [80] leverage MI for self-supervised
graph learning. DGI [81] learns node representations by
maximizing MI between the patch representations and the
summaries of graphs. InfoGraph [78] maximizes the MI
between the graph representation and the representations
of substructures to encode structure across different scales.
GMI [79] generalizes the computation of MI from vector
space to the graph space in terms of features and topology
for node representation learning.

To sum up, most existing GNNs with MI focus on node-
level or graph-level representations while ours focuses on
subgraph representations. Besides, most of them exploit MI
for self-supervised learning and seldom consider the MI
between representations and labels, while our label-aware
MI enhancement mechanism aims to make the subgraph
more predictive for the downstream tasks.

3 ADASNN: ADAPTIVE SUBGRAPH NEURAL NET-
WORK

AdaSNN is an adaptive subgraph neural network for graph
classification, which detects critical subgraphs as a represen-
tative abstraction of the whole graph. Concretely, a flexible
architecture is required to (1) detect critical subgraph of arbi-
trary size and shape without annotation supervision information
and (2) preserve the properties of the whole graph in the detected
critical subgraphs. To solve these two problems, we design a
Reinforcement Subgraph Detection Module and a Bi-Level
MI Enhancement Mechanism, respectively.

In this section, we first give the problem formulation in
Section 3.1 and present AdaSNN’s pipeline in Section 3.2.
Then we introduce the Reinforcement Subgraph Detection
Module in Section 3.3, following the Bi-Level MI Enhance-
ment Mechanism in Section 3.4. Finally, Section 3.5 describes
the overall algorithm and optimization.

3.1 Problem Formulation
In this subsection, we first summarize the main notations in
Table 2 and then formalize the definition of graph classifica-
tion and critical subgraph detection as follows.

A set of graphs is denoted by G := {G}. Each G =

(V,X,E,A) is represented by the set of nodes V = {vi}||V |
i=1,

node feature matrix X ∈ R|V |∗d0 , the set of edges E =

{ei}||E|
i=1, and the adjacency matrix A ∈ R|V |∗|V |, where |V |

and |E| denote the sizes of V and E, and d0 denotes the
dimension of node features. In this paper, we focus on the
graph supervised classification task.

Definition 1 (Graph Classification). Given a set of graphs
G := {G}, a graph classification algorithm learns a model
F : G→ Y to map the graph sample to its label.

Definition 2 (Critical Subgraph Detection). Given a graph
G with label Y , a critical subgraph detection algorithm learns
a model F : G → {g} to find critical subgraphs {g} that
dominate the properties of graph G with respect to its label Y
of the downstream task.

TABLE 2: Main notations in the paper. The top rows are
for graph representation learning; the middle rows cover
deep reinforcement learning; the bottom rows cover mutual
information maximization.

Notation Definition

G A graph dataset.
G, Y A graph and its label.
V,X Node set and node attribute matrix.
E,A Edge set and adjacent matrix.
Gske Sketched graph.
V ske, Eske Node set and edge set of the sketched graph.
v node.
N (k)(v) k-hop neighborhood of the node v.
hg Embedding of node in subgraph g.
g subgraph.
V (g) Node set of subgraph g.
zg Subgraph embedding.
zG Graph embedding.
N Number of detected subgraphs.
bcom The edge threshold of the sketched graph.
Lcls Graph classification loss.

S State set.
A Action set.
R Reward function.
T State transition.
st State in the t-th timestep.
at Action in the t-th timestep.
rt Reward in the t-th timestep.
Q(s, a) Value function to evaluate the state and action.
π Policy function.
K Maximum subgraph depth.

p(·) Probability desity function.
H(·) Shannon entropy.
I(·, ·) Shannon mutual information.
KL(·||·) Kullback Leiber divergence.
nneg The number of negative samples.
Lglobal
MI Global-Aware MI enhancement loss.

Llabel
MI Label-Aware MI enhancement loss.

3.2 Pipeline of AdaSNN

Graph Critical Subgraphs Sketched Graph

(1) (2) (3)

Fig. 1: The pipeline of AdaSNN includes three steps to build
a subgraph neural network: (1) Critical Subgraph Detection,
(2) Subgraph Sketching and Encoding, and (3) Subgraph
Representation Enhancement.
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Label-Aware
MI Enhancement 

Loss

Global-Aware
MI Enhancement 

Loss

Graph
Classification 

Loss

Graph
Classification 

Loss

Step 3: Bi-Level MI
Enhancement

sketch

subgraph emb.

graph labelDepth-Agent

Neighbor-Agent

detect

Loss Function

encode

subgraphsubgraph

enhance

Step 2: Subgraph Sketching and Encoding

Fig. 2: An illustration of the AdaSNN architecture. Step-1: the Reinforced Subgraph Detection Module aims to detect
critical subgraphs {gi} for an input graph G. Step-2: the critical subgraphs {gi} are used to contract a sketched graph Gske

and encoded into subgraph representations {zgi }. Step-3: the Bi-Level MI Enhancement Mechanism further enhances the
subgraph representations and uses them for classification.

Before providing a detailed introduction to AdaSNN, we
first describe its pipeline in Fig. 1. Without loss of generality,
we introduce this process by focusing on a specific graph G
in the given dataset G = {G}. Briefly, using AdaSNN for
graph classification includes three steps: (1) Critical Sub-
graph Detection, which detects critical subgraphs from the
input graph; (2) Subgraph Sketching and Encoding, which
builds a sketched graph upon the detected subgraphs and
learns the subgraph encodings; and (3) Subgraph Represen-
tation Enhancement, which further enhances the subgraph
representations and uses them for classification. Fig. 2
depicts AdaSNN’s overall architecture.

Step-1: Critical Subgraph Detection. To tackle the
challenges (i.e., data-specific, task-specific, arbitrary size,
arbitrary shape, and absence of annotations) mentioned in
Section 1, we develop a Reinforced Subgraph Detection
Module, which learns to find critical subgraphs from the
original graph with the feedback of the downstream task
without supervision information. The detected subgraphs
determine the local neighborhoods of the center nodes to
further gather the information around them.

Directly sampling some nodes and taking the induced
subgraphs as the critical subgraphs are difficult due to the
arbitrary size and rich dependencies of graphs. We first
sample a set of seed nodes {vi}Ni=1 as the center nodes of
subgraphs, and then sample subgraphs around these seed
nodes. Moreover, we decompose the subgraph sampling
task as two sub-tasks (i.e., depth decision and neighbor
decision), and design two agents (i.e., Depth-Agent and
Neighbor-Agent) to solve them. Specifically, for every center
node vi, we first use a 2-layer GNN encoder to transform the
node features into the node encodings as the initialization.
Then we detect the subgraph around vi:

di ⇐ πd(G, vi), gi ⇐ πn(G, vi, di), (1)

where di is the subgraph depth for center node vi, gi is the
detected subgraph around vi, πd and πn are the learned pol-
icy of Depth-Agent and Neighbor-Agent, respectively. The
Reinforcement Subgraph Detection Module is introduced in
detail in Section 3.3.

Step-2: Subgraph Sketching and Encoding. After ob-
taining critical subgraphs {gi}, we contract them into a
sketched graph Gske = (V ske, Eske) and then use an atten-
tion mechanism to learn subgraph embeddings. Specifically,
we treat every subgraph as a supernode in the sketched
graph. The connectivity between V ske is determined by
the number of common nodes of two subgraphs. When
the number of common nodes in gi and gj is more than
a constant bcom, ei,j will be added to the edge set of the
sketched graph.

V ske = {gi}, ∀ i = 1, 2, · · · , N ;

Eske = {ei,j}, ∀
∣∣∣V (gi)

⋂
V (gj)

∣∣∣ > bcom.
(2)

Then we learn the representations of subgraphs from
two perspectives: intra-subgraph and inter-subgraph. For
the intra-subgraph perspective, we feed each subgraph gi
into a GNN-based encoder, E , to obtain an embedding
of nodes within subgraphs. Then the node representations
H(gi) of nodes within gi can be calculated by the following
generalized equation:

H(gi) = E(gi) = {hi(vj)|vj ∈ V (gi)} , (3)

where hi(vj) is the node encodings. E(·) can be formulated
as a unified message-passing framework:

h
(l+1)
i (vj) = U(l+1)

(
h
(l)
i (vj),AGG

(
M(l+1)(h

(l)
i (vk)

))
,

∀ vk ∈ V (gi) and vk ∈ N (vj)),
(4)

where h
(l+1)
i (vj) is the node encoding of vi in the (l + 1)-

th GNN layer, M(·) is the message generation, AGG(·) is
the message aggregation, and U(·) is the updating function.
Note that AdaSNN is flexible in terms of the GNN model
used for the subgraph encoding step, various GNNs can
be substituted for Eq. (3). Then we leverage a READOUT
function to encode node encodings into a unified space for
subgraph representations. After that, the hidden representa-
tions hg

i of gi can be computed as follows:

hg
i = READOUT

(
{hL

i (vj)}, vj ∈ V (gi)
)
, (5)
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State: Action:

Choose
subgraph depth

Choose
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Choose
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...
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high-order

neighbor emb.

Depth-Agent Neighbor-Agent

center emb. context emb.. . . . . . Reward:

Subgraph
 Neural 

Network

Action: State:

...

center emb. context emb. center emb. context emb.

Fig. 3: An illustration of the reinforced subgraph detection module. For a given center node, a critical subgraph is detected
in two phases: (1) For a center node vt, Depth-Agent generates an action adt by policy πd to specify the number of hops for
the current subgraph; (2) With the specified depth k = adt , Neighbor-Agent generates actions (a

n(1)
t , a

n(2)
t , · · · , an(k)t ) by

policy πn to sample the member nodes of subgraph within k-hop neighbors of node vt hop by hop.

where L denotes the number of layers in the GNN encoder
E(·), and the READOUT function can be any pooling oper-
ations and we use a simple sum pooling here.

Then we adopt an inter-subgraph attention mechanism
to learn the interaction between subgraphs from their em-
bedded vectors. Specifically, we calculate the attention co-
efficient αij of subgraph gi on gj by a multi-head atten-
tion mechanism as in [18]. The subgraph representations
zg = {zgi }Ni=1 can be obtained by the attention guided
information aggregation of its neighbor subgraph:

zgi =
1

M

M∑
m=1

∑
eij∈Eske

αm
ijW

m
interh

g
j , (6)

where αij denotes the attention coefficient, Winter denotes
a trainable weight matrix, and M denotes the number of
attention heads.

Step-3: Subgraph Representation Enhancement. To
obtain more discriminative representations, we design a Bi-
Level Mutual Information (MI) Maximization Mechanism
to further enhance the subgraph representations {zgi }Ni=1 in
two perspectives: Global-Aware MI and Label-Aware MI.

The Global-Aware MI Maximization aims to encourage
the subgraph representation to be aware of the global prop-
erties of the whole graph. Its objective is to maximize the
MI between local subgraph representation zgi and the global
graph representation zG over the given dataset G = {G},
where G is the graph that gi belongs to.

max
∑
G∈G

1

N

N∑
i=1

I
(
zgi , z

G
)
. (7)

The Label-Aware MI Maximization aims to encourage
the subgraph representations to be discriminative among
graph samples. Its objective is to maximize MI between sub-

graph/label pair (zgi , Y ) over the given dataset G = {G},
where Y is the label of the graph that gi belongs to.

max
∑
G∈G

1

N

N∑
i=1

I (zgi , Y ) . (8)

Ate last, the enhanced subgraph representations are sum-
marized into a graph representation for the graph classifi-
cation task. The Bi-Level MI Enhancement Mechanism is
introduced in detail in Section 3.4.

3.3 Reinforced Subgraph Detection Module

In the Reinforced Subgraph Detection Module, we use a
reinforcement learning algorithm to adaptively detect crit-
ical subgraphs of arbitrary size and shape. We model the
proposed subgraph detection by a Finite Horizon Markov
Decision Process (MDP) M(G, Y ). As shown in Fig. 3, we
sample a subgraph for each seed node in two phases:
(1) For a center node vt, Depth-Agent generates an action adt
according to the policy π(sdt ) to specify the depth k for the
subgraph around vt;
(2) With the specified k = adt , Neighbor-Agent generates ac-
tions (a

n(1)
t , a

n(2)
t , · · · , an(k)t ) to sample the member nodes

of subgraph within k-hop neighbors of vt hop by hop. Then
we introduce the components of these two agents.

3.3.1 Depth-Agent.

Depth-Agent chooses the depth of a subgraph for a given
center node. The components (Sd,Ad,Rd, T d) of Depth-
Agent are defined as:
• State (Sd). The state is defined as the center embedding

of current center node vt, which we denote as ht for sim-
plicity, and the context embedding of its K-hop neighbors
zN

(K)(vt):
sdt =

(
ht, z

N(K)(vt)
)
, (9)
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where zN
(K)(vt) is the mean vector of all nodes in vt’s K-

hop neighbors. K is a pre-defined hyper-parameter which
determines the maximum subgraph depth.

• Action (Ad). The depth selection action of the Depth-
Agent adt denotes the depth of the critical subgraph
around the center node vt, which is always a positive
integer and 1 ≤ adt ≤ K.

• Reward (Rd). It is hard to sense the GNN’s state due
to its black-box nature, making the cumulative reward
unavailable. For the reward function, we directly define
a discrete reward function rd(sdt , a

d
t ) based on the per-

formance improvement on the downstream task as our
purpose is to push the performance boundary. The reward
function can be formulated as:

rd(sdt , a
d
t ) =

{
+0.5, if Ŷt = Y,

−0.5, if Ŷt ̸= Y,
(10)

where Y is the ground-truth label and Ŷ is the predicted
label at epoch t. In this work, Eq. (10) indicates the reward
is positive if the graph classification accuracy with (sdt , a

d
t )

is higher than in t− 1 and vice versa.
• Transition (T d). After choosing the depth of the current

subgraph, Depth-Agent samples the next center node in
seed nodes as the next state sdt+1. Once the agent samples
N subgraphs for a graph instance, the process stops.

3.3.2 Neighbor-Agent.
Neighbor-Agent chooses the member nodes of a subgraph
hop by hop with depth chosen by Depth-Agent. The compo-
nents (Sn,An,Rn, T n) of Neighbor-Agent are defined as:
• State (Sn). The state is defined as the center embedding

of current subgraph zgk−1 and the context embedding
zN

(t)(vt) of nodes in the k-th hop:

s
n(k)
t =

(
zgk−1 , zN

(k)(vt)
)
. (11)

zgk−1 is the mean vector of nodes in current (k − 1)-
hop subgraph and we set zg1 as the center node vt’s
representation ht. zN

(k)(vt) is the mean vector of all nodes
in vt’s k-th hop neighbors.

• Action (An). With a specified depth integer k = adt , the
hop-by-hop neighbor sampling actions are denoted as
a
n(1)
t , a

n(2)
t , · · · , an(k)t , where a

n(k)
t denotes the action in

the k-th hop of the Neighbor-Agent. Hence the subgraph
sampling action can be decomposed into hierarchical ac-
tions ant = (a

n(1)
t , a

n(2)
t , · · · , an(k)t ).

• Reward (Rn). Similar with the Depth-Agent, we define
the reward function rn(snt , a

n
t ) as the performance im-

provement on the downstream graph classification task
to objectively measure the critical subgraph effect, with
reward being:

rn(snt , a
n
t ) =

{
+0.5, if Ŷt = Y

−0.5, if Ŷt ̸= Y
(12)

• Transition (T n). After choosing the member nodes by ant ,
the Neighbor-Agent takes the representation of current
subgraph and nodes in the next hop as snt+1. Once the
agent samples k-hop member nodes for the subgraph, the
process stops.

Algorithm 1: Reinforced Subgraph Detection

Input: Graph G = (V,X,E,A); maximum number
of subgraph depth K ; explosion probability ϵ;
reward window size w; memory buffers Bd
and Bn; training step S.

Output: Critical subgraphs {gi}.
1 Initialize Qd, Qn, Bd and Bn;
// Subgraph Detection

2 sd1 ← Eq. (9);
3 for t = 1, 2, · · · , N do
4 Depth-Agent choose an action adt by Qd;
5 for i = 1, 2, · · · , adt do
6 s

n(i)
t ← Eq. (11);

7 Neighbor-Agent choose an action a
n(i)
t by Qn;

8 Expand the current subgraph;
9 end

10 Obtain rdt and rnt on the validation dataset by
Eq. (10) and Eq. (12);

11 Sample the next center node from the set of seed
nodes;

12 sdt+1 ← Eq. (9);
13 if Bd and Bn are full then
14 Apply Algorithm 2 to train AdaSNN;
15 Clear memory buffers Bd and Bn;
16 end
17 Store {sdt , adt , sdt+1, r

d
t } into Bd;

18 Store {snt , ant , snt+1, r
n
t } into Bn;

19 end
// Optimization

20 for step = 1, 2, · · · , S do
21 Optimize Qd using the data in Bd by Eq. (13);
22 Optimize Qn using the data in Bn by Eq. (14).
23 end

In this work, we use the widely-used DQN [74], a
model-free algorithm, to learn an optimal policy that can
maximize the expected total reward overall steps starting
from the current state. More advanced algorithms could also
be employed in our framework. DQN [74] uses a deep neu-
ral network to approximate the state-action value Q(s, a).
Based the above reward functions Eq. (10) and Eq. (12), we
train the Q functions for Depth-Agent and Neighbor-Agent,
respectively:

Qd(sd, ad) = Esd′ [R(s
d′
) + γd max

ad′
(Qd(sd

′
, ad

′
)], (13)

Qn(sn, an) = Esn′ [R(sn
′
) + γn max

an′
(Qn(sn

′
, an

′
)], (14)

where γd and γn ∈ [0, 1] denotes the discount factors of
future reward. A ε-greedy policy with an explore probability
ε is adopted to obtain the policies πd and πn:

π(adt |sdt ;Qd∗) =

 random action, with probability ε

argmax
ad
t

Qd∗(sdt , a
d
t ), otherwise

(15)

π(ant |snt ;Qn∗) =

 random action, with probability ε

argmax
an
t

Qn∗(snt , a
n
t ), otherwise

(16)
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It means that the RL agents explore new states by choosing
a random action with probability ε instead of choosing an
action that can get the maximum future reward.

3.4 Bi-Level MI Enhancement Mechanism
Since the core idea of AdaSNN is extracting critical sub-
graphs as a representative abstraction of the graph, the crit-
ical subgraphs should be aware of global graph properties
and be predictive for the downstream task. Formally, we
designed a Bi-Level Mutual Information (MI) Enhancement
mechanism from an information-theoretic perspective, aim-
ing to enhance the subgraph representations on two levels:
(1) Global-Aware MI: MI between subgraph representation
and graph representation;
(2) Label-Aware MI: MI between subgraph representation
and graph label.

3.4.1 Global-Aware MI Enhancement
To extract critical subgraphs at a global scale, we encourage
the derived subgraph representations to preserve the global
structure properties, rather than enforcing all properties
contained in one overarching graph representation vector.

We use the Jensen-Shannon estimator [82] to maximize
the MI over the local subgraph embedding and global
embedding pairs in Eq. (7). The Jensen-Shannon estima-
tor is approximately monotonic with the Kullback Leiber
divergence [83], which can provide better and more stable
results. The Global-Aware MI mechanism is performed in a
contrastive way as the Jensen-Shannon estimator is based
on discriminating the local/global pairs and negatively
sampled pairs. In this work, we set the negative local/global
pairs as a subgraph representation zg with an alternative
graph representation zG

′
. The global graph representation

zG is the summarization of the obtained subgraph-level
embeddings via a READOUT(·) function:

zG = READOUT
(
{zgi }

N
i=1

)
. (17)

We can adopt any permutation-invariant function (e.g, aver-
aging and graph-level pooling) as the READOUT(·) func-
tion. Specifically, we apply a simple mean strategy here.
Then the global/local MI can be expressed as:

I
(
zg, zG

)
:=EP

[
−sp

(
−T

(
zg, zG

))]
− EP×P̃

[
sp
(
T
(
zg, zG

′
))]

,
(18)

where G is an input sample following the empirical prob-
ability distribution of the input space P, G′ is a graph
sampled from P̃ = P and sp(z) = log(1 + ez) denotes the
softplus function.

For the above objective, a discriminator D is introduced
as in [83], which determines whether the input subgraph
embedding and graph embedding are from the same graph.
Then the Global-Aware MI Enhancement loss function
Lglobal
MI can be formulated as a binary cross-entropy loss:

Lglobal
MI =

1

N +Nneg

(
N∑

gi∈G

log
(
D(zgi , z

G)
)

+

Nneg∑
gj∈G

log
(
1−D(zgj , z

G′
))

,

(19)

where nneg is the number of negative samples. As men-
tioned before, the Global-Aware MI Enhancement mecha-
nism is performed in a contrastive way as it is based on
discriminating local and global pairs and the negatively
sampled pairs. The negative sampling strategy governs the
specific kinds of captured structure information and is a
critical implementation detail of contrastive methods. In
our framework, the negative samples are generated in a
batch-wise fashion by taking another graph instance in the
current batch as G′. To investigate the impact of the negative
sampling strategy, we design another negative sampling
strategy G′(V,X ′, A) = C(G(V,X,A)), which corrupt the
original graph for negative samples. The corruption func-
tion C(·) preserves original node sets V and adjacency
matrix A whereas corrupts node feature matrix X ′ by row-
wise shuffling following the settings in [81]. We further
analyze the impacts of two negative sampling strategies in
Section 4.4.

3.4.2 Label-Aware MI Enhancement

To extract task-relevant subgraphs, we encourage the de-
tected subgraphs to be predictive of the graph label. We use
the Label-Aware MI Enhancement Mechanism to maximize
the relevance between the subgraph embeddings zg and
the graph label Y in Eq. (8). According to the information
theory, the mutual information I(Y, zg) between zg and Y
is defined as:

I(Y, zg) =
∫
p(Y, zg) log

p(y|zg)
p(y)

dY dzg

=

∫
p(Y, zg) log p(y|zg)dY dzg

− p(Y, zg) log p(Y )dY dzg

=

∫
p(Y, zg) log p(Y |zg)dY dzg +H(Y ).

(20)

Examining Eq. (20), we can see that H(Y ) denotes the
entropy of label set Y , which should be ignored during
optimization. In practice, p(Y, zg) can be approximated with
an empirical distribution by sampling on training data.
Then we can substitute the true posterior p(Y |zg) with a
variational approximation qϕ(Y |zg) for a tractable lower
bound for I(Y, zg):

I(Y, zg) =
∫

p(Y, zg) log p(Y |zg)dY dzg +H(Y )

≥
∫

p(Y, zg) log qϕ(Y |zg)dY dzg

+KL(p(Y |zg)||qϕ(Y |zg)).

(21)

According to the non-negativity of Kullback Leiber diver-
gence KL(p(Y |zg)||qϕ(Y |zg) ≥ 0 , then we have:

I(Y, zg) ≥
∫

p(Y, zg) log qϕ(Y |zg)dY dzg

+KL(p(Y |zg)|qϕ(Y |zg))

≥
∫

p(Y, zg) log qϕ(Y |zg)dY dzg

≈ 1

N

i=1∑
N

log qϕ(Yi|zgi )

=: Llabel
MI (zg, Y ).

(22)
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Algorithm 2: Training process of AdaSNN

Input: Graphs with labels {G = (V,X,E,A), Y };
memory buffers Bd and Bn; Number of
epochs epochmax.

Output: Predicted graph label Ŷ
1 for e = 1, 2, · · · , epochmax do

// Critical Subgraph Detection
2 Obtain detected critical subgraphs {gi} from Bd

and Bn;
// Subgraph Sketching and Encoding

3 Contract the sketched graph Gske ← G;
4 Calculate the intra-subgraph representation hg

i

by Eq. (5);
5 Calculate the inter-subgraph representations zg

by Eq. (6);
6 Readout the graph representations zG by

Eq. (17);
// Subgraph Representation

Enhancement

7 Sample negative samples zG
′
;

8 Calculate the Global-Aware MI loss Lglobal
MI by

Eq.(19);
9 Calculate the Label-Aware MI loss Llabel

MI by
Eq.(22);
// Optimization

10 Calculate the overall loss L by Eq.(23);
11 Update parameters by descending L;
12 end

Eq. (22) indicates that I(Y, zg) can be maximized by min-
imizing the classification loss Llabel

MI between zg and Y .
Intuitively, minimizing Llabel

MI encourages the subgraph rep-
resentation to be relevant to the graph label, making zg

predictive to Y . In practice, we set Llabel
MI as the cross-

entropy loss.

3.5 Optimization of AdaSNN

We define the overall loss L of AdaSNN as the combination
of the supervised graph classification loss Lcls, the Global-
Aware MI loss Lglobal

MI and the Label-Aware MI loss Llabel
MI :

L = Lcls + β1Lglobal
MI + β2Llabel

MI , (23)

where Lcls = CE(zG, Y ) is the cross-entropy loss for graph
classification, β1 and β2 control the contribution of the
Global-Aware MI Enhancement and Label-Aware MI En-
hancement, respectively. In doing so, AdaSNN can preserve
both local and global graph structure properties as well as
rich discriminative intermediate subgraph representations.

Based on the aforementioned study, Algorithm 2 outlines
the training process of the proposed AdaSNN. To make
the training process more stable, we use a memory buffer
mechanism as in [65]. Specifically, we construct two buffers
Bd and Bn for the Depth-Agent and the Neighbor-Agent.
The obtained states and actions are stored in the buffers.
When the buffer is full, we randomly sample the experience
data in the buffer to optimize the corresponding Q function
by Eq. (13) and Eq. (14) and then clear the buffer.

TABLE 3: Statistics of datasets.

Dataset # Graphs # Classes Max. |V | Avg. |V | Node Features
MUTAG 188 2 28 17.9 7

PTC 344 2 64 14.29 18
PROTEINS 1,113 2 620 39.1 3

IMDB-B 1,000 2 136 19.8 136
IMDB-M 1,500 3 89 13 89

REDDIT-B 2,000 2 3,782 429.6 1
OGBG-PPA 158,100 37 300 243.4 300

4 EXPERIMENTAL ANALYSIS

This section empirically evaluates the proposed AdaSNN fo-
cusing on the following research questions:
• Q1. How does AdaSNN perform in improving graph

learning quality and robustness? (Section 4.2)
• Q2. How does the Reinforcement Subgraph Detection

Module influence the performance of AdaSNN? (Section
4.3)

• Q3. How does the Bi-Level MI Enhancement Mechanism
influence the performance of AdaSNN? (Section 4.4)

• Q4. Can AdaSNN be trained stably with the complex RL
based subgraph detection strategy? (Section 4.5)

• Q5. Can AdaSNN detect subgraphs with prominent pat-
terns and provide insightful interpretations? (Section 4.7)

4.1 Experimental Setups

4.1.1 Datasets
We consider the commonly-used benchmark datasets for
graph classification. The dataset statistics are summarized
in Table 3.
• Bioinformatics datasets: MUTAG [85] contains 188 com-

pounds marked according to whether it has a mutagenic
effect on a bacterium, where the node features are the
one-hot encodings of atom types; PTC [86] contains 344
organic molecules marked according to their carcino-
genicity on male mice, where the node features are the
one-hot encodings of atom types; PROTEINS [87] con-
tains 1,113 proteins marked as enzyme or non-enzyme,
where the node features are the one-hot encodings of
the amino acid types. OGBG-PPA [88] contains 158,100
undirected protein association neighborhoods extracted
from the protein-protein association networks marked
according to what taxonomic group the graph originates
from, where the node features are the one-hot encodings
of node degrees.

• Social network datasets: IMDB-B [89] and IMDB-M [89]
are movie collaboration datasets marked according to the
genre an ego-network belongs to, where the node features
are the one-hot encodings of node degree; REDDIT-B [89]
contains 2,000 online discussion thread graphs between
users marked according to their subreddit, where the
node features are the normalized node degrees.

4.1.2 Baselines
We consider a number of state-of-the-art baselines, includ-
ing graph neural networks, graph pooling methods, critical
structure detection methods, a graph transformer, and a
graph reinforcement learning method to demonstrate the
effectiveness and robustness of AdaSNN.
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TABLE 4: Graph classification results: “average accuracy±standard deviation (rank)”. (bold: best; underlined: runner-up.)

Model
Dataset

Avg. Rank
MUTAG PTC PROTEINS IMDB-B IMDB-M REDDIT-B

GCN [50] 74.3±11.0 (12) 57.2±5.6 (8) 74.3±11.0 (4) 70.7±3.7 (15) 50.4±5.6 (8) 73.6±4.5 (15) 10.3
GAT [18] 73.8±7.4 (13) 56.4±7.4 (10) 71.4±4.0 (12) 71.3±4.2 (10) 50.7±7.4 (5) 73.1±2.6 (16) 11.0
GIN [19] 82.5±6.8 (6) 56.1±3.3 (13) 70.7±5.6 (13) 73.2±4.8 (5) 50.1±7.4 (9) 85.4±3.0 (10) 9.3

DiffPool [42] 83.9±9.7 (4) 53.1±10.9 (16) 72.7±4.6 (6) 70.9±5.3 (13) 48.7±6.5 (12) 88.8±2.3 (4) 9.2
ASAPool [45] 74.3±7.7 (11) 57.6±6.6 (6) 72.1±4.3 (11) 71.5±4.4 (9) 51.3±6.6 (3) 88.9±2.5 (3) 7.1

Top-K Pool [44] 71.8±1.1 (15) 56.1±1.1 (12) 70.5±1.5 (14) 71.2+2.5 (11) 47.2±1.1 (15) 75.5±4.6 (12) 13.2
SortPool [23] 84.4±14.1 (2) 56.7±6.8 (9) 74.7±4.4 (3) 71.2±4.7 (12) 49.9±6.8 (10) 85.1±5.0 (11) 7.8
SAGPool [43] 71.8±3.1 (16) 55.2±1.5 (15) 70.3±0.8 (15) 70.7±2.0 (14) 48.5±5.5 (13) 74.1±2.8 (14) 14.5
EdgePool [84] 75.9±7.7 (10) 58.4±5.4 (4) 72.3±4.4 (9) 72.8±4.4 (8) 49.5±5.4 (11) 89.7±2.0 (2) 7.3

SAT [56] 83.8±1.7 (5) 58.6±2.1 (3) 73.3±2.7 (5) 72.9±1.9 (6) 50.4±2.8 (6) 88.6±1.8 (6) 5.2
PolicyGNN [65] 79.8±2.8 (8) 59.4±1.8 (2) 72.6±1.1 (7) 73.7±3.1 (3) 48.2±4.3 (14) 85.7±2.1 (7) 6.8
Ego-CNN [28] 73.4±1.1 (14) 55.5±2.8 (14) 68.1±4.9 (16) 72.7±2.8 (7) 50.7±1.2 (4) 74.5±3.3 (13) 11.3

SIB [27] 83.9±6.4 (3) 57.3±2.8 (7) 74.9±5.1 (2) 73.7±7.0 (4) 51.6±4.8 (2) 85.7±3.5 (9) 4.5
CAL [62] 82.2±7.2 (7) 58.2±8.7 (5) 72.6±3.3 (8) 68.7±5.0 (16) 47.2±4.7 (16) 88.7±1.5 (5) 9.5

SUGAR [31] 78.7±7.9 (9) 56.3±1.9 (11) 72.2±4.5 (10) 73.8+3.4 (2) 50.4±4.4 (7) 87.6±2.5 (8) 7.8
AdaSNN(Ours) 87.2±5.0 (1) 60.2±6.4 (1) 76.5±2.6 (1) 74.2±2.5 (1) 51.9±4.7 (1) 89.7±1.4 (1) 1.0

• Graph neural networks: GCN [50] performs spectral
graph convolutions on the graph adjacency matrix;
GAT [18] leverages the attention mechanism to assign
different weights to different neighborhoods; GIN [19]
is a message-passing model designed by the Weisfeiler-
Lehman graph isomorphism test.

• Graph pooling methods: DiffPool [42] learns a differen-
tiable soft cluster assignment for nodes and maps clusters
to supernodes as a coarsened graph layer by layer; AS-
APool [45] utilizes an attention mechanism to capture the
nodes’ importance and pools the subgraphs to a coarsen
graph by a learnable sparse soft cluster assignment; Top-k
Pool [44] adaptively selects some critical nodes to form
a smaller subgraph based on their importance vectors;
SortPool [23] sorts graph nodes in a consistent order and
designs a localized graph convolution model trained on
the node sequences; SAGPool [43] uses a self-attention
mechanism to retain some nodes and drop the others;
EdgePool [84] learns a localized and sparse pooling trans-
form by edge contraction.

• Critical structure detection methods: Ego-CNN [28] em-
ploys the ego-convolutions at each layer and detects pre-
cise critical structures in an ego-centric way by stacking
layers; SIB [27] extends the general information bottleneck
principle to graph data for the subgraph recognition prob-
lem; SUGAR [31] first samples some subgraphs and then
uses a DQN algorithm to choose top-k critical subgraphs
as the representative abstraction of the whole graph.
CAL [62] proposes the Causal Attention Learning (CAL)
strategy to discover the critical subgraphs by estimating
the causal and shortcut features via an attention module.

• Graph transformer: SAT [56] is the only existing graph
transformer method that incorporates the structure ex-
plicitly. It incorporates the structural information into the
original self-attention by extracting a k-hop subgraph or
a k-subtree rooted at each node before computing the
attention.

• Graph reinforcement learning method: PolicyGNN [65]
uses a reinforcement learning algorithm to determine the

depth of aggregations for each node adaptively.

4.1.3 Implementation Details
For all GNN-based baselines and graph pooling baselines,
we adopt the implementations from the PyTorch Geometric
Library2 in all experiments. For the remaining baselines
(Ego-CNN3, SIB4, SAT5, PolicyGNN6, CAL7), we use the
source codes provided by the authors and we use the GIN
as the backbone. We perform a hyper-parameter search for
common parameters of all models on the validation set and
follow the settings in their original papers in terms of other
hyper-parameters.

For our AdaSNN, we use GIN [19] with 16 hidden units
as the subgraph encoder in Eq.(3) and the mean pooling op-
eration as the READOUT function in Eq. (17). The number
of detected subgraphs N is chosen according to the graph
size. We construct a 5-layers of MLP with (64, 128, 256, 128,
64) hidden units for Q function in DQN. For the ε-greedy
policy, we set up a linear scheduler, where ε decades from
1.0 to 0.2 with a discount factor 0.95 every 100 steps. The loss
coefficients α1 and α2 are chosen by a grid search strategy.

4.2 Overall Evaluation (Q1)
This subsection evaluates AdaSNN on both graph classifica-
tion and graph denoising tasks to verify AdaSNN’s ability
to improve graph learning quality and robustness.

4.2.1 Graph Classification
We performed 10-fold cross-validation on MUTAG, PTC,
PROTEINS, IMDB-B, IMDB-M and REDDIT-B8. We report
the accuracy, standard deviation, and rank of every method

2 https://github.com/rusty1s/pytorch geometric
3 https://github.com/rctzeng/EgoCNN
4 https://github.com/Samyu0304/graph-information-bottleneck-

for-Subgraph-Recognition
5 https://github.com/BorgwardtLab/SAT
6 https://github.com/datamllab/Policy-GNN
7 https://github.com/yongduosui/CAL
8 We follow the protocol in https://github.com/rusty1s/pytorch g

eometric/tree/master/benchmark/kernel
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Fig. 4: Test accuracy (± standard deviation) in the edge
attack scenarios on REDDIT-B.

TABLE 5: Graph classification results on OGBG-PPA: “aver-
age accuracy±standard deviation”. (bold: best).

Method GIN ASAPool SAT SIB SUGAR AdaSNN
Acc.±Std 68.12±1.2 71.24±3.8 74.17±1.8 72.88±5.0 73.25±6.8 74.31±1.8

in Table 4, where the best ones are in bold and the runner-
ups are underlined.

As shown in Table 4, AdaSNN consistently outperforms
fifteen baselines on six datasets. AdaSNN achieves more
gains consistently compared to selection-based pooling
methods (e.g., SortPool [44], SAGPool [43]) and the global
denoising method SIB [27], supporting our intuition of
information denoising in subgraph-level. The graph trans-
former SAT [56] is the third among all baselines, showing
the effectiveness of capturing the importance of subgraphs.
AdaSNN outperforms SAT because it can exploit subgraphs
of arbitrary size and shape while SAT is built upon fixed k-
hop subgraphs. The graph reinforcement learning method
Policy-GNN [65] also does not perform as well as AdaSNN
because it only learns the order of the subgraphs rather than
the more concrete structures. Compared the recent critical
subgraph detection method Ego-CNN [28], SIB [27] and
CAL [62], AdaSNN also shows advantage in classification
accuracy, which achieves 3.3% and 4.0% improvements in
terms of average accuracy on MUTAG and REDDIT-B than
SIB [27], respectively. Specifically, our AdaSNN and SIB [27]
perform better than Ego-CNN [28]. It may be because Ego-
CNN [28] is limited to the enumerated simple ego-networks,
while our AdaSNN can capture more complex subgraphs of
varied sizes and shapes.

We also evaluate the proposed AdaSNN with compet-
itive baselines on a larger dataset ODBG-PPA. The results
are shown in Table 5, where the best results are shown in
bold. AdaSNN achieves the best performance.

Altogether, the proposed AdaSNN shows very promising re-
sults on graph classification task against the advanced methods.

4.2.2 Graph Denoising

To evaluate the robustness of AdaSNN, we generate syn-
thetics datasets by deleting or adding edges in the REDDIT-
B dataset. Specifically, for each graph, we randomly remove
(if edges exist) or add (if no such edges) 25%, 50%, and 75%
edges. We report the results of the vanilla GCN, the most
competitive baseline SIB and our method in Fig. 4, where
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Fig. 5: AdaSNN with different subgraph detection strategies.
(▲ denotes the mean accuracy value)

the solid line is the mean accuracy and the shaded region is
the standard deviation over 5 runs.

As shown in Fig. 4, the accuracy of all methods dropped
with the increasing noise degrees and GCN suffers the most.
Since SIB and AdaSNN can find the most predictive critical
subgraphs, they show better robustness than GCN, and
our AdaSNN achieves better results with less performance
degradation. We notice that other baseline methods show
similar trends as SIB, not shown to avoid cluttering the
figure.

Benefit from the critical structure detection, the proposed
AdaSNN is resistant to the task-irrelevant information and shows
better robustness.

4.3 Analysis of the Reinforced Subgraph Detection
Module (Q2)
This subsection analyzes the impact of the Reinforced Sub-
graph Detection Module in terms of its effectiveness, stabil-
ity, and parameter sensitivity.

4.3.1 Impact of the Reinforced Subgraph Detection Module
To demonstrate the effectiveness of the Reinforced Subgraph
Detection Module, we introduce the following two variants
of AdaSNN:
• AdaSNN(2hop), which takes fixed 2-hop subgraphs as

critical subgraphs;
• AdaSNN(random), which takes subgraphs with ran-

domly chosen depth as critical subgraphs.
The results of AdaSNN and two variants on three

datasets are summarized in Figure 5. Since we take the
critical subgraphs as a representative abstraction of the
whole graph, the quality of detected subgraphs directly
determines the quality of graph representation. As shown
in Figure 5, the mean accuracy of AdaSNN with the Re-
inforced Subgraph Detection Module is higher than the
other variants on three datasets and achieves at most 5.08%
improvement over AdaSNN(2hop). The consistent improve-
ment supports the intuition behind our critical subgraph
detection approach.

We also compare AdaSNN with the preliminary version
SUGAR [31] to demonstrate the effectiveness of critical sub-
graphs of arbitrary shapes and sizes. Remind that SUGAR
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Fig. 6: Training accuracy dynamics of AdaSNN and SUGAR
on PTC dataset.

is a two-phase framework that samples subgraphs by fixed
rules and then selects critical ones, where the reinforcement
learning algorithm is used to decide the number of critical
subgraphs. The critical subgraphs detected by SUGAR are
constrained by the sampling rules. We plot the training pro-
cess of AdaSNN and SUGAR in Fig. 6, where the enclosed
shadowed area is the range of accuracies in three training
runs, the middle solid line is the mean accuracy, and the
dashed horizontal line is the mean accuracy value in the
last 10 epochs.

As we can observe, the training process of AdaSNN is
not as stable as SUGAR, which maybe because of the more
complex reinforcement learning algorithm for critical sub-
graph detection. The mean accuracy of AdaSNN achieves
about 0.78% improvement than SUGAR, supporting our
intuition behind the critical subgraph detection.

This indicates the proposed Reinforced Subgraph Detection
Module is effective to improve the performance of graph classi-
fication by extracting more meaningful and predictive subgraphs.

4.3.2 Reinforcement Learning Process.

Since the RL algorithm in the Reinforced Subgraph Detec-
tion Module and the subgraph neural network are trained
jointly, their updating and convergence are indeed impor-
tant. Fig. 7 shows the training process of AdaSNN on
MUTAG and IMDB-B over five runs. The shadowed area
is enclosed by the minimum and maximum rewards and
the middle solid line is the mean reward over five runs. The
dashed horizontal line denotes the mean reward in the last
10 epochs.

As we can observe, the mean reward converges to 0.4243
on MUTAG and 0.4852 on IMDB-B with a stable learning
curve within 30 epochs, which means that the framework
can predict true labels based on the detected subgraph.

This indicates the proposed Reinforced Subgraph Detection
Module can be trained with the subgraph neural network stably
and converges fast.
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Fig. 7: Mean reward of the Reinforcement Subgraph Detec-
tion Module.
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depth K .

4.3.3 Parameter Sensitivity of the Number of Subgraphs
and the Maximum Subgraph Depth
This subsection analyzes the impact of the number of de-
tected subgraphs N and the maximum subgraph depth K .

In Fig. 8, we evaluate the proposed AdaSNN with dif-
ferent subgraph numbers n from 10 to 26 on MUTAG (left)
and from 12 to 32 on IMDB-B (right). Note that the average
node number of graph instances in MUTAG and IMDB-
B is 18 and 20, respectively. It shows a similar trend on
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Fig. 10: AdaSNN with different MI enhancement mecha-
nisms.

both datasets that the performance first increases and then
bumps with the increase number of subgraphs. Although
AdaSNN does not give satisfactory results with a small
number of subgraphs, it is found that considering more sub-
graphs obviously helps to improve performance. It can also
be observed that when the number of subgraphs is larger
than the average degree, the performance of AdaSNN was
is not significantly improved.

In Fig. 9, we evaluate the proposed AdaSNN with
different maximum subgraph depths K from 2 to 6 on
MUTAG (left) and IMDB-B (right). K determines the agent
state as well as the range of the action set. As shown in
Fig. 9, AdaSNN achieves the best performance with K=3
in MUTAG and K = 5 in IMDB-B. This indicates that the
critical subgraphs in social networks have a higher order
than in bioinformatics graphs. It is reasonable because the
diameters of most of the basic functional blocks in molecules
are around 3 and the long-range dependency also plays an
important role in social networks [90].

This indicates that AdaSNN can obtain competitive perfor-
mance when the detected critical subgraphs can cover the impor-
tant functional building blocks of the graph.

4.4 Analysis of the Bi-Level MI Enhancement Mecha-
nism (Q3)

This subsection analyzes the impact of the Bi-Level MI En-
hancement Mechanism in terms of its effectiveness, negative
sampling strategy, and parameter sensitivity.

4.4.1 Impact of the Bi-Level MI Enhancement Mechanism

To verify the effectiveness of the Bi-Level MI Enhancement
Mechanism, we introduce the following three variants of
AdaSNN:
• AdaSNN(w/o Bi-Level): AdaSNN without the Bi-Level

MI Enhancement mechanism, whose loss is L = Lcls;
• AdaSNN(w/o LA): AdaSNN without Label-Aware MI

Enhancement, i.e., with Global-Aware MI enhancement,
whose loss is L = Lcls + β1Lglobal

MI ;
• AdaSNN(w/o GA): AdaSNN without the Global-Aware

MI Enhancement, i.e., with Label-Aware MI enhancement,
whose loss is L = Lcls + β2Llabel

MI .
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Fig. 11: Parameter sensitivity of loss coefficients β1 and β2

on PTC (left) and IMDB-B (right).

• AdaSNN(w/o sub): AdaSNN without the subgraph de-
tection and sketching, which uses the GIN as the graph
encoder and directly maximizes the Global-Aware Mutual
Information between nodes and the graph and the Label-
Aware Mutual Information between nodes and the graph
label.

We show the performance of AdaSNN and its three
variants on MUTAG, PTC, and IMDB-B in Fig. 10. We
can observe that AdaSNN with Bi-Level MI Enhancement
Mechanism shows better performance than the other three
variants. In addition, AdaSNN(w/o LA) consistently out-
performs AdaSNN(w/o GA) and shows a difference of
about one percent from AdaSNN on all three datasets, indi-
cating that the Label-Aware MI plays a more important role
in enhancing the subgraphs to be critical and discriminative.
AdaSNN(w/o sub) enforces the single node preserving both
graph properties and label information and shows unsatis-
fied performance, indicating the effectiveness of extracting
subgraphs explicitly.

We also analyze the parameter sensitivity of the Bi-Level
MI loss coefficients β1 and β2 in Eq. (23) on PTC (left)
and IMDB-B (right) datasets. β1 controls the contribution
of the Global-Aware MI loss Lglobal

MI and β2 controls the
contribution of the Label-Aware MI loss Llabel

MI . As we can
observe in Fig. 11, AdaSNN performs best on PTC dataset
when β1 is from 0.6 to 0.8 and β2 is from 0.2 to 0.4. For the
PTC dataset, the Global-Aware MI loss Lglobal

MI plays a major
role in the Bi-Level MI enhancement mechanism, which sug-
gests that making the subgraphs contain the overall graph
properties benefits more for social networks. For the IMDB-
B dataset, the Label-Aware MI loss Llabel

MI plays a major role
in the Bi-Level MI enhancement mechanism, indicating that
making the subgraphs contain the label information benefits
more for social networks. This indicates that the Bi-Level MI
Enhancement mechanism can give informative self-supervision to
AdaSNN so that subgraph representations can be discriminative
towards other graph instances. The proposed Bi-Level MI en-
hancement mechanism can capture different critical information
for different types of datasets through two enhancement ways.

4.4.2 Impact of the Negative Sampling Strategy
The negative sampling strategy for G′ is a critical imple-
mentation detail of Global-Aware MI Enhancement, which
governs the specific kinds of captured structure information.
We further analyze the impacts of the negative sampling
strategy and negative sampling ratio. As mentioned in Sec-
tion 3.4.1, AdaSNN samples an alternative graph G′ from
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TABLE 6: Performance comparison of AdaSNN(Corrupt)
and AdaSNN.

Dataset
Method

MUTAG PTC PROTEINS IMDB-B

AdaSNN(Corrupt) 78.1±6.1 55.2±9.8 74.2±5.8 70.1±6.0
AdaSNN 87.2±5.0 60.2±6.4 76.5±2.6 74.2±2.5

P̃ = P. The negative samples are generated in a batch-wise
fashion by taking another graph instance in the batch as
the alternative graph G′. We also design another negative
sampling strategy for G′:
• AdaSNN(Corrupt), which constructs negative samples

by graph corruption G′(V,X ′, A) = C(G(V,X,A)). The
corruption function C(·) corrupts node feature matrix by
row-wise shuffling and preserves original V and A.

The comparison results of AdaSNN and AdaSNN(MI
Corrupt) are shown in Table 6. We can observe that
AdaSNN (i.e., sampling another graph from the batch) con-
sistently outperforms AdaSNN(MI Corrupt) (i.e., corrupting
the graph). One possible reason is that the graph corruption
will make G′ lose important structure properties and can
only give weak supervision.

This indicates that the negative sampling strategy should
be carefully designed so that subgraph representations can be
discriminative towards other graph instances.

4.4.3 Parameter Sensitivity of the Negative Sampling Ratio
The Global-Aware MI enhancement mechanism aims to
maximize the mutual information between critical sub-
graphs and graphs in a contrastive way. The common belief
is that competitive contrastive methods need a large number
of negative samples [91]. Fig. 12 shows the performances of
AdaSNN with different negative sampling ratios nneg : n
in Eq. (19). With the increase of negative samples, the per-
formance of AdaSNN varies within three percent on three
datasets. The larger negative sampling ratio seems to not
boost the performance of AdaSNN significantly. A possible
reason is that the negative samples are drawn for every
detected critical subgraph, which already provides sufficient
self-supervision even with a small negative sampling ratio.
Considering the computational overhead caused by a large
number of negative samples, we set the negative sampling
ratio to 1 in other experiments.

This indicates the effectiveness of the proposed AdaSNN in
terms of finding meaningful and effective critical subgraphs which
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Fig. 13: Training stability of AdaSNN on MUTAG dataset.

can act as hard negative samples in the self-supervised MI en-
hancement mechanism.

4.5 Training Stability of AdaSNN (Q4)
The core idea of AdaSNN is critical subgraph abstraction by
the Reinforced Subgraph Detection Module. Combining the
GNN and reinforcement learning algorithm is indeed com-
plex and challenging. In addition, the estimation of mutual
information in the self-supervised Bi-Level MI enhancement
mechanism always suffers from unstable training. In this
subsection, we analyze the convergence of AdaSNN.

We show the training process of AdaSNN on MUTAG
dataset in Fig. 13, including the graph classification loss
Lcls, the Global-Aware MI loss Lglobal

MI and the Label-Aware
MI loss Llabel

MI . Here we set β1 = 0.7 and β2 = 0.1 in
Eq. (23) and set learning − rate = 0.01. The dash lines
in Fig. 13 indicate the mean value in the last 10 epochs
when AdaSNN converges. We can see that the Global-Aware
MI loss Lglobal

MI quickly converges within 20 epochs and the
Label-Aware MI loss Llabel

MI converges steadily within 150
epochs. The graph classification loss Lcls bumps but still
decreases during the training process. It may be because the
shapes of detected critical subgraphs change very quickly
with the update of the reinforcement learning agents in the
Reinforced Subgraph Detection Module.

Overall speaking, even with the complex combination of RL al-
gorithms, self-supervised MI enhancement mechanism, and GNN,
the proposed AdaSNN can be trained stably.

4.6 Complexity and Time Analysis
In this section, we will analyze the computational com-
plexity and consumption of AdaSNN. The overall time
complexity of on graph of AdaSNN is O(Nb̄K +Nb̄2+N2),
where N is the number of subgraphs, b̄ is the average node
degree and K is the maximum subgraph depth. Specifically,
the time complexity of the Reinforced Subgraph Detection
Module is O(Nb̄K). The 2-layer GIN encoder takes O(Nb̄2).
The subgraph sketching takes O(N2). For the Bi-Level MI
Enhancement Mechanism, loss calculation takes O(N). The
overall memory complexity of AdaSNN is O(Nb̄K). In
our experiments, N is selected from 5 to 20 according to
the graph size and K is set to 4 or 5. In addition, we
count the time consumption of 10 epochs and report the
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Fig. 14: Result visualization of AdaSNN on MUTAG dataset (Graph ID: 111).
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Fig. 15: Result visualization of AdaSNN on IMDB-B dataset (Graph ID: 292).

average time of one epoch in Table 7. All experiments run
on the same multi-node GPU cluster, where each node in
the cluster consists of a 64-core Intel Xeon E5-2680v4 CPU
@ 2.40GHz with 512GB RAM and an NVIDIA V100 GPU
with 32GB RAM. AdaSNN shows comparable efficiency
with the substructure-aware methods (SAT and SIB) and the
graph reinforcement learning method (PolicyGNN) when
achieving the best performance.

TABLE 7: Statistics of the average training time of one epoch
(in second).

Dataset
Method

MUTAG PTC PROTEINS IMDB-B IMDB-M REDDIT-B

DiffPool 1.63 4.83 6.52 6.45 7.84 35.27
EdgePool 0.44 0.61 2.78 2.65 3.28 21.23

SAT 3.69 5.64 14.30 15.26 19.28 46.78
PolicyGNN 4.88 3.50 10.42 12.18 14.99 58.26

SIB 1.69 2.95 10.13 8.39 11.97 41.56
AdaSNN 5.13 6.68 21.81 17.71 23.78 40.18

4.7 Visualization (Q5)
This subsection visualizes the results to provide further
insight of the changes brought by AdaSNN intuitively.

To examine the capability of AdaSNN on interpreting
the property of graphs, we further visualize some results in
Fig. 14 and Fig. 15, respectively. In both Fig. 14 and Fig. 15,
the left part is the original graph, where the node size is
proportional to its frequency in the critical subgraphs. For
MUTAG dataset in Fig. 14, the node color denotes the node’s
element type as labeled on it. For IMDB dataset in Fig. 15,
the shade of node color is proportional to node’s frequency
in the critical subgraphs. The middle part is the sketched
graph with the sketch threshold bcom = 1 and bcom = 2
on MUTAG and IMDB-B, respectively. The right part is

the critical subgraphs detected by the Reinforced Subgraph
Detection Module.

Chemical Compounds. In the MUTAG dataset, there
are 188 molecule graphs labeled by their mutagenic effect
on bacteriums. The mutagenic molecules’ main determinant
is nitro elements and the nitro group NO2 connected to a
carbon ring [85]. As we can observe in Fig. 14, the proposed
AdaSNN successfully detects the nitro group and the carbon
rings. Besides, the sketched graph can reflect the higher-
order interactions between them.

Social Interactions. IMDB-B is a movie collaboration
dataset consisting of 1,000 ego-networks of actors and ac-
tresses who played roles in movies in IMDB. The ego-
networks are labeled as the Action genre or Romance genre,
where the nodes represent actors/actresses and the edges
represent the concurrence of actors in a movie. As in Fig. 15,
AdaSNN can find the close relations between a few nodes
(i.e., some important actors) rather than treating all nodes
equally. Besides, most of the detected subgraphs contain the
bridging node between the two communities in the original
graph. The sketched graph also reflects the interactions
between actor groups.

The visualization results suggest that the proposed
AdaSNN can detect discriminative subgraphs and has great
promise to provide interpretability for the learned results.

5 CONCLUSION

This work proposed AdaSNN, a novel graph representation
framework by critical subgraph detection and abstraction.
AdaSNN detects critical subgraphs adaptively by a Rein-
forcement Subgraph Detection Module and reconstructs a
sketched graph by contracting critical subgraphs. It fur-
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ther enhances the subgraph representations to be discrim-
inative by a Bi-Level Mutual Information Enhancement
Mechanism. In this way, AdaSNN preserves both local and
global properties hierarchically. AdaSNN provides explicit
subgraph-level explanations rather than node or edge level,
which can provide good interpretability and insight into
graph analysis. Extensive experiments show the effective-
ness and advantages of the proposed AdaSNN.

In the future, we will study how to extend more ad-
vanced RL algorithms to our models for more efficient
critical subgraph detection. In addition, we aim to extend
the RL-guided subgraph neural network to more graph
mining applications, such as subgraph classification, graph
interpretation, etc.
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